Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114063, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38635400

RESUMO

Bacteria overcome ribosome stalling by employing translation elongation factor P (EF-P), which requires post-translational modification (PTM) for its full activity. However, EF-Ps of the PGKGP subfamily are unmodified. The mechanism behind the ability to avoid PTM while retaining active EF-P requires further examination. Here, we investigate the design principles governing the functionality of unmodified EF-Ps in Escherichia coli. We screen for naturally unmodified EF-Ps with activity in E. coli and discover that the EF-P from Rhodomicrobium vannielii rescues growth defects of a mutant lacking the modification enzyme EF-P-(R)-ß-lysine ligase. We identify amino acids in unmodified EF-P that modulate its activity. Ultimately, we find that substitution of these amino acids in other marginally active EF-Ps of the PGKGP subfamily leads to fully functional variants in E. coli. These results provide strategies to improve heterologous expression of proteins with polyproline motifs in E. coli and give insights into cellular adaptations to optimize protein synthesis.

2.
Nucleic Acids Res ; 52(5): 2372-2388, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214234

RESUMO

Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.


Assuntos
Neoplasias Encefálicas , Glioma , Histonas , Criança , Humanos , Neoplasias Encefálicas/patologia , Reparo do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Glioma/patologia , Histonas/genética , Histonas/metabolismo , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética
3.
J Biol Chem ; 300(2): 105648, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219816

RESUMO

Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.


Assuntos
Biossíntese de Proteínas , Ribossomos , Animais , Humanos , Ratos , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
Appl Environ Microbiol ; 89(12): e0063023, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054732

RESUMO

IMPORTANCE: Fusaric acid (FA) is an important virulence factor produced by several Fusarium species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms. This mycotoxin reduces the survival and competition abilities of bacterial species able to antagonize Fusarium spp., due to its negative effects on viability and the production of antibiotics effective against these fungi. FA biodegradation is not a common characteristic among bacteria, and the determinants of FA catabolism have not been identified so far in any microorganism. In this study, we identified genes, enzymes, and metabolic pathways involved in the degradation of FA in the soil bacterium Burkholderia ambifaria T16. Our results provide insights into the catabolism of a pyridine-derivative involved in plant pathogenesis by a rhizosphere bacterium.


Assuntos
Complexo Burkholderia cepacia , Burkholderia , Fusarium , Micotoxinas , Animais , Humanos , Micotoxinas/metabolismo , Ácido Fusárico/metabolismo , Burkholderia/metabolismo , Complexo Burkholderia cepacia/metabolismo , Fungos/metabolismo , Solo , Fusarium/metabolismo , Doenças das Plantas/microbiologia
5.
Mol Hum Reprod ; 30(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38128016

RESUMO

Oxygen (O2) concentrations have recently been discussed as important regulators of ovarian cells. Human IVF-derived granulosa cells (human GCs) can be maintained in vitro and are a widely used cellular model for the human ovary. Typically, GCs are cultured at atmospheric O2 levels (approximately around 20%), yet the O2 conditions in vivo, especially in the preovulatory follicle, are estimated to be much lower. Therefore, we comprehensively evaluated the consequences of atmospheric versus hypoxic (1% O2) conditions for 4 days on human GCs. We found lower cellular RNA and protein levels but unchanged cell numbers at 1% O2, indicating reduced transcriptional and/or translational activity. A proteomic analysis showed that 391 proteins were indeed decreased, yet 133 proteins were increased under hypoxic conditions. According to gene ontology (GO) enrichment analysis, pathways associated with metabolic processes, for example amino acid-catabolic-processes, mitochondrial protein biosynthesis, and steroid biosynthesis, were downregulated. Pathways associated with glycolysis, chemical homeostasis, cellular response to hypoxia, and actin filament bundle assembly were upregulated. In accordance with lower CYP11A1 (a cholesterol side-chain cleavage enzyme) levels, progesterone release was decreased. A proteome profiler, as well as IL-6 and IL-8 ELISA assays, revealed that hypoxia led to increased secretion of pro-inflammatory and angiogenic factors. Immunofluorescence studies showed nuclear localization of hypoxia-inducible factor 1α (HIF1α) in human GCs upon acute (2 h) exposure to 1% O2 but not in cells exposed to 1% O2 for 4 days. Hence, the role of HIF1α may be restricted to initiation of the hypoxic response in human GCs. The results provide a detailed picture of hypoxia-induced phenotypic changes in human GCs and reveal that chronically low O2 conditions inhibit the steroidogenic but promote the inflammatory phenotype of these cells.


Assuntos
Oxigênio , Proteômica , Feminino , Humanos , Oxigênio/metabolismo , Células da Granulosa/metabolismo , Hipóxia/metabolismo , Fenótipo
6.
Nat Cancer ; 4(10): 1508-1525, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723306

RESUMO

The PDCD1-encoded immune checkpoint receptor PD-1 is a key tumor suppressor in T cells that is recurrently inactivated in T cell non-Hodgkin lymphomas (T-NHLs). The highest frequencies of PDCD1 deletions are detected in advanced disease, predicting inferior prognosis. However, the tumor-suppressive mechanisms of PD-1 signaling remain unknown. Here, using tractable mouse models for T-NHL and primary patient samples, we demonstrate that PD-1 signaling suppresses T cell malignancy by restricting glycolytic energy and acetyl coenzyme A (CoA) production. In addition, PD-1 inactivation enforces ATP citrate lyase (ACLY) activity, which generates extramitochondrial acetyl-CoA for histone acetylation to enable hyperactivity of activating protein 1 (AP-1) transcription factors. Conversely, pharmacological ACLY inhibition impedes aberrant AP-1 signaling in PD-1-deficient T-NHLs and is toxic to these cancers. Our data uncover genotype-specific vulnerabilities in PDCD1-mutated T-NHL and identify PD-1 as regulator of AP-1 activity.


Assuntos
Linfoma de Células T Periférico , Linfoma de Células T , Camundongos , Animais , Humanos , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Linfoma de Células T/genética , Genes Supressores de Tumor , Acetilcoenzima A/metabolismo , Glicólise/genética
7.
EMBO Rep ; 24(10): e57023, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37724628

RESUMO

Proteins involved in cellular metabolism and molecular regulation can extend lifespan of various organisms in the laboratory. However, any improvement in aging would only provide an evolutionary benefit if the organisms were able to survive under non-ideal conditions. We have previously shown that Drosophila melanogaster carrying a loss-of-function allele of the acetyltransferase chameau (chm) has an increased healthy lifespan when fed ad libitum. Here, we show that loss of chm and reduction in its activity results in a substantial reduction in weight and a decrease in starvation resistance. This phenotype is caused by failure to properly regulate the genes and proteins required for energy storage and expenditure. The previously observed increase in survival time thus comes with the inability to prepare for and cope with nutrient stress. As the ability to survive in environments with restricted food availability is likely a stronger evolutionary driver than the ability to live a long life, chm is still present in the organism's genome despite its apparent negative effect on lifespan.

8.
Nucleic Acids Res ; 51(18): 9629-9642, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650653

RESUMO

The use of synthetic chemicals to selectively interfere with chromatin and the chromatin-bound proteome represents a great opportunity for pharmacological intervention. Recently, synthetic foldamers that mimic the charge surface of double-stranded DNA have been shown to interfere with selected protein-DNA interactions. However, to better understand their pharmacological potential and to improve their specificity and selectivity, the effect of these molecules on complex chromatin needs to be investigated. We therefore systematically studied the influence of the DNA mimic foldamers on the chromatin-bound proteome using an in vitro chromatin assembly extract. Our studies show that the foldamer efficiently interferes with the chromatin-association of the origin recognition complex in vitro and in vivo, which leads to a disturbance of cell cycle in cells treated with foldamers. This effect is mediated by a strong direct interaction between the foldamers and the origin recognition complex and results in a failure of the complex to organise chromatin around replication origins. Foldamers that mimic double-stranded nucleic acids thus emerge as a powerful tool with designable features to alter chromatin assembly and selectively interfere with biological mechanisms.


Assuntos
Biomimética , Montagem e Desmontagem da Cromatina , Ciclo Celular , Cromatina , DNA , Replicação do DNA , Complexo de Reconhecimento de Origem/metabolismo , Proteoma , Animais , Drosophila , Embrião não Mamífero/química , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Proteínas Cromossômicas não Histona/metabolismo
9.
EMBO Rep ; 24(9): e56150, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37424514

RESUMO

The largest subunit of RNA polymerase (Pol) II harbors an evolutionarily conserved C-terminal domain (CTD), composed of heptapeptide repeats, central to the transcriptional process. Here, we analyze the transcriptional phenotypes of a CTD-Δ5 mutant that carries a large CTD truncation in human cells. Our data show that this mutant can transcribe genes in living cells but displays a pervasive phenotype with impaired termination, similar to but more severe than previously characterized mutations of CTD tyrosine residues. The CTD-Δ5 mutant does not interact with the Mediator and Integrator complexes involved in the activation of transcription and processing of RNAs. Examination of long-distance interactions and CTCF-binding patterns in CTD-Δ5 mutant cells reveals no changes in TAD domains or borders. Our data demonstrate that the CTD is largely dispensable for the act of transcription in living cells. We propose a model in which CTD-depleted Pol II has a lower entry rate onto DNA but becomes pervasive once engaged in transcription, resulting in a defect in termination.


Assuntos
RNA Polimerase II , Transcrição Gênica , Humanos , RNA Polimerase II/metabolismo , Núcleo Celular/metabolismo , Mutação , Fosforilação
10.
Cell Chem Biol ; 30(7): 766-779.e11, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37354906

RESUMO

Inhibition of protein-protein interactions (PPIs) via designed peptides is an effective strategy to perturb their biological functions. The Elongin BC heterodimer (ELOB/C) binds to a BC-box motif and is essential for cancer cell growth. Here, we report a peptide that mimics the high-affinity BC-box of the PRC2-associated protein EPOP. This peptide tightly binds to the ELOB/C dimer (kD = 0.46 ± 0.02 nM) and blocks the association of ELOB/C with its interaction partners, both in vitro and in the cellular environment. Cancer cells treated with our peptide inhibitor showed decreased cell viability, increased apoptosis, and perturbed gene expression. Therefore, our work proposes that blocking the BC-box-binding pocket of ELOB/C is a feasible strategy to impair its function and inhibit cancer cell growth. Our peptide inhibitor promises novel mechanistic insights into the biological function of the ELOB/C dimer and offers a starting point for therapeutics linked to ELOB/C dysfunction.


Assuntos
Neoplasias , Fatores de Transcrição , Elonguina/metabolismo , Fatores de Transcrição/metabolismo , Ligação Proteica , Peptídeos/farmacologia , Peptídeos/metabolismo , Apoptose , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias/tratamento farmacológico
11.
Nat Commun ; 14(1): 352, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681662

RESUMO

DNA-protein crosslinks (DPCs) are pervasive DNA lesions that are induced by reactive metabolites and various chemotherapeutic agents. Here, we develop a technique for the Purification of x-linked Proteins (PxP), which allows identification and tracking of diverse DPCs in mammalian cells. Using PxP, we investigate DPC repair in cells genetically-engineered to express variants of the SPRTN protease that cause premature ageing and early-onset liver cancer in Ruijs-Aalfs syndrome patients. We find an unexpected role for SPRTN in global-genome DPC repair, that does not rely on replication-coupled detection of the lesion. Mechanistically, we demonstrate that replication-independent DPC cleavage by SPRTN requires SUMO-targeted ubiquitylation of the protein adduct and occurs in addition to proteasomal DPC degradation. Defective ubiquitin binding of SPRTN patient variants compromises global-genome DPC repair and causes synthetic lethality in combination with a reduction in proteasomal DPC repair capacity.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA , Animais , Humanos , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mamíferos/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
12.
PLoS Biol ; 21(1): e3001937, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602948

RESUMO

Apicomplexa are obligate intracellular parasites. While most species are restricted to specific hosts and cell types, Toxoplasma gondii can invade every nucleated cell derived from warm-blooded animals. This broad host range suggests that this parasite can recognize multiple host cell ligands or structures, leading to the activation of a central protein complex, which should be conserved in all apicomplexans. During invasion, the unique secretory organelles (micronemes and rhoptries) are sequentially released and several micronemal proteins have been suggested to be required for host cell recognition and invasion. However, to date, only few micronemal proteins have been demonstrated to be essential for invasion, suggesting functional redundancy that might allow such a broad host range. Cysteine Repeat Modular Proteins (CRMPs) are a family of apicomplexan-specific proteins. In T. gondii, two CRMPs are present in the genome, CRMPA (TGGT1_261080) and CRMPB (TGGT1_292020). Here, we demonstrate that both proteins form a complex that contains the additional proteins MIC15 and the thrombospondin type 1 domain-containing protein (TSP1). Disruption of this complex results in a block of rhoptry secretion and parasites being unable to invade the host cell. In conclusion, this complex is a central invasion complex conserved in all apicomplexans.


Assuntos
Toxoplasma , Animais , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Organelas/metabolismo
13.
Nucleic Acids Res ; 51(2): 574-594, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36537216

RESUMO

The lysine acetyltransferase KAT6A (MOZ, MYST3) belongs to the MYST family of chromatin regulators, facilitating histone acetylation. Dysregulation of KAT6A has been implicated in developmental syndromes and the onset of acute myeloid leukemia (AML). Previous work suggests that KAT6A is recruited to its genomic targets by a combinatorial function of histone binding PHD fingers, transcription factors and chromatin binding interaction partners. Here, we demonstrate that a winged helix (WH) domain at the very N-terminus of KAT6A specifically interacts with unmethylated CpG motifs. This DNA binding function leads to the association of KAT6A with unmethylated CpG islands (CGIs) genome-wide. Mutation of the essential amino acids for DNA binding completely abrogates the enrichment of KAT6A at CGIs. In contrast, deletion of a second WH domain or the histone tail binding PHD fingers only subtly influences the binding of KAT6A to CGIs. Overexpression of a KAT6A WH1 mutant has a dominant negative effect on H3K9 histone acetylation, which is comparable to the effects upon overexpression of a KAT6A HAT domain mutant. Taken together, our work revealed a previously unrecognized chromatin recruitment mechanism of KAT6A, offering a new perspective on the role of KAT6A in gene regulation and human diseases.


Assuntos
Cromatina , Histona Acetiltransferases , Histonas , Humanos , Cromatina/genética , Ilhas de CpG/genética , DNA , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação
14.
Proteomics ; 23(9): e2200179, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36571325

RESUMO

Data-independent acquisition (DIA) of tandem mass spectrometry spectra has emerged as a promising technology to improve coverage and quantification of proteins in complex mixtures. The success of DIA experiments is dependent on the quality of spectral libraries used for data base searching. Frequently, these libraries need to be generated by labor and time intensive data dependent acquisition (DDA) experiments. Recently, several algorithms have been published that allow the generation of theoretical libraries by an efficient prediction of retention time and intensity of the fragment ions. Sequential windowed acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) is a DIA method that can be applied at an unprecedented speed, but the fragmentation spectra suffer from a lower quality than data acquired on Orbitrap instruments. To reliably generate theoretical libraries that can be used in SWATH experiments, we developed deep-learning for SWATH analysis (dpSWATH), to improve the sensitivity and specificity of data generated by Q-TOF mass spectrometers. The theoretical library built by dpSWATH allowed us to increase the identification rate of proteins compared to traditional or library-free methods. Based on our analysis we conclude that dpSWATH is a superior prediction framework for SWATH-MS measurements than other algorithms based on Orbitrap data.


Assuntos
Aprendizado Profundo , Espectrometria de Massas em Tandem/métodos , Proteínas , Algoritmos , Bases de Dados Factuais
15.
Nucleic Acids Res ; 50(21): e125, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36189882

RESUMO

The reversible attachment of ubiquitin governs the interaction, activity and degradation of proteins whereby the type and target of this conjugation determine the biological response. The investigation of this complex and multi-faceted protein ubiquitination mostly relies on painstaking biochemical analyses. Here, we employ recombinant binding domains to probe the ubiquitination of proteins in living cells. We immobilize GFP-fused proteins of interest at a distinct cellular structure and detect their ubiquitination state with red fluorescent ubiquitin binders. With this ubiquitin fluorescent three-hybrid (ubiF3H) assay we identified HP1ß as a novel ubiquitination target of UHRF1. The use of linkage specific ubiquitin binding domains enabled the discrimination of K48 and K63 linked protein ubiquitination. To enhance signal-to-noise ratio, we implemented fluorescence complementation (ubiF3Hc) with split YFP. Using in addition a cell cycle marker we could show that HP1ß is mostly ubiquitinated by UHRF1 during S phase and deubiquitinated by the protease USP7. With this complementation assay we could also directly detect the ubiquitination of the tumor suppressor p53 and monitor its inhibition by the anti-cancer drug Nutlin-3. Altogether, we demonstrate the utility of the ubiF3H assay to probe the ubiquitination of specific proteins and to screen for ligases, proteases and small molecules controlling this posttranslational modification.


Assuntos
Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
Nat Commun ; 13(1): 5445, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114198

RESUMO

Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in carp3 and flam8 knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Moscas Tsé-Tsé , Adenilil Ciclases/metabolismo , Animais , AMP Cíclico , Trypanosoma brucei brucei/metabolismo , Moscas Tsé-Tsé/parasitologia
17.
Circ Res ; 131(8): 701-712, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36102188

RESUMO

BACKGROUND: Amino acid metabolism is crucial for inflammatory processes during atherogenesis. The endogenous amino acid homoarginine is a robust biomarker for cardiovascular outcome and mortality with high levels being protective. However, the underlying mechanisms remain elusive. We investigated the effect of homoarginine supplementation on atherosclerotic plaque development with a particular focus on inflammation. METHODS: Female ApoE-deficient mice were supplemented with homoarginine (14 mg/L) in drinking water starting 2 weeks before and continuing throughout a 6-week period of Western-type diet feeding. Control mice received normal drinking water. Immunohistochemistry and flow cytometry were used for plaque- and immunological phenotyping. T cells were characterized using mass spectrometry-based proteomics, by functional in vitro approaches, for example, proliferation and migration/chemotaxis assays as well as by super-resolution microscopy. RESULTS: Homoarginine supplementation led to a 2-fold increase in circulating homoarginine concentrations. Homoarginine-treated mice exhibited reduced atherosclerosis in the aortic root and brachiocephalic trunk. A substantial decrease in CD3+ T cells in the atherosclerotic lesions suggested a T-cell-related effect of homoarginine supplementation, which was mainly attributed to CD4+ T cells. Macrophages, dendritic cells, and B cells were not affected. CD4+ T-cell proteomics and subsequent pathway analysis together with in vitro studies demonstrated that homoarginine profoundly modulated the spatial organization of the T-cell actin cytoskeleton and increased filopodia formation via inhibition of Myh9 (myosin heavy chain 9). Further mechanistic studies revealed an inhibition of T-cell proliferation as well as a striking impairment of the migratory capacities of T cells in response to relevant chemokines by homoarginine, all of which likely contribute to its atheroprotective effects. CONCLUSIONS: Our study unravels a novel mechanism by which the amino acid homoarginine reduces atherosclerosis, establishing that homoarginine modulates the T-cell cytoskeleton and thereby mitigates T-cell functions important during atherogenesis. These findings provide a molecular explanation for the beneficial effects of homoarginine in atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Água Potável , Placa Aterosclerótica , Aminoácidos , Animais , Apolipoproteínas E , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Feminino , Homoarginina/farmacologia , Camundongos , Cadeias Pesadas de Miosina , Linfócitos T/metabolismo
18.
Mol Hum Reprod ; 28(10)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35944223

RESUMO

In the ovary, proliferation and differentiation of granulosa cells (GCs) drive follicular growth. Our immunohistochemical study in a non-human primate, the Rhesus monkey, showed that the mitochondrial activity marker protein cytochrome c oxidase subunit 4 (COX4) increases in GCs in parallel to follicle size, and furthermore, its intracellular localization changes. This suggested that there is mitochondrial biogenesis and trafficking, and implicates the actions of gonadotropins, which regulate follicular growth and ovulation. Human KGN cells, i.e. granulosa tumour cells, were therefore used to study these possibilities. To robustly elevate cAMP, and thereby mimic the actions of gonadotropins, we used forskolin (FSK). FSK increased the cell size and the amount of mitochondrial DNA of KGN cells within 24 h. As revealed by MitoTracker™ experiments and ultrastructural 3D reconstruction, FSK treatment induced the formation of elaborate mitochondrial networks. H89, a protein kinase A (PKA) inhibitor, reduced the network formation. A proteomic analysis indicated that FSK elevated the levels of regulators of the cytoskeleton, among others (data available via ProteomeXchange with identifier PXD032160). The steroidogenic enzyme CYP11A1 (Cytochrome P450 Family 11 Subfamily A Member 1), located in mitochondria, was more than 3-fold increased by FSK, implying that the cAMP/PKA-associated structural changes occur in parallel with the acquisition of steroidogenic competence of mitochondria in KGN cells. In summary, the observations show increases in mitochondria and suggest intracellular trafficking of mitochondria in GCs during follicular growth, and indicate that they may partially be under the control of gonadotropins and cAMP. In line with this, increased cAMP in KGN cells profoundly affected mitochondrial dynamics in a PKA-dependent manner and implicated cytoskeletal changes.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Complexo IV da Cadeia de Transporte de Elétrons , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Mitocondrial , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Gonadotropinas/metabolismo , Gonadotropinas/farmacologia , Células da Granulosa/metabolismo , Mitocôndrias/metabolismo , Proteômica
19.
Commun Biol ; 5(1): 408, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505192

RESUMO

Suitable animal models are essential for translational research, especially in the case of complex, multifactorial conditions, such as obesity. The non-inbred mouse (Mus musculus) line Titan, also known as DU6, is one of the world's longest selection experiments for high body mass and was previously described as a model for metabolic healthy (benign) obesity. The present study further characterizes the geno- and phenotypes of this non-inbred mouse line and tests its suitability as an interventional obesity model. In contrast to previous findings, our data suggest that Titan mice are metabolically unhealthy obese and short-lived. Line-specific patterns of genetic invariability are in accordance with observed phenotypic traits. Titan mice also show modifications in the liver transcriptome, proteome, and epigenome linked to metabolic (dys)regulations. Importantly, dietary intervention partially reversed the metabolic phenotype in Titan mice and significantly extended their life expectancy. Therefore, the Titan mouse line is a valuable resource for translational and interventional obesity research.


Assuntos
Obesidade , Indicadores de Qualidade em Assistência à Saúde , Animais , Expectativa de Vida , Camundongos , Camundongos Endogâmicos , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Fenótipo
20.
Eur J Immunol ; 52(5): 760-769, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35099066

RESUMO

Signaling via ß2 integrins (CD11/CD18) as well as TCRs and BCRs involves similar pathways. However, the activation of the same signaling molecule can result in opposing effects. One such example is the hematopoietic progenitor kinase 1 (HPK1), which negatively regulates T and B cell activation but enforces neutrophil adhesion via ß2 integrins. This difference may be defined by specific HPK1 interacting networks in different leukocyte subsets which have already been described in the adaptive immune system. Here, we set out to identify interacting proteins of HPK1 in neutrophil-like differentiated HL-60 cells exposed to immobilized fibrinogen and left nonactivated or Mn2+ -activated to allow ß2 integrin-dependent adhesion. Co-IP experiments followed by mass spectrometry led to the identification of 115 HPK1-interacting proteins. A total of 58 proteins were found only in nonactivated cells and 39 proteins only in Mn2+ -activated adherent cells. From these results, we decoded a pre-existing signaling cluster of HPK1 in nonactivated cells encompassing proteins essential for ß2 integrin-mediated signaling during neutrophil trafficking, namely DNAX-activation protein 12 (DAP12), spleen tyrosine kinase (Syk), and Rac1. Thus, our study provides novel insights into the complex architecture of the signaling processes during neutrophil activation and the complex signaling profile of HPK1 in leukocytes.


Assuntos
Proteômica , Receptores de Antígenos de Linfócitos T , Humanos , Imunidade Inata , Integrinas/metabolismo , Proteínas Serina-Treonina Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...